[JavaScript] 게임 맵 최단 거리 (프로그래머스 Lv.2)
문제 설명
ROR 게임은 두 팀으로 나누어서 진행하며, 상대 팀 진영을 먼저 파괴하면 이기는 게임입니다. 따라서, 각 팀은 상대 팀 진영에 최대한 빨리 도착하는 것이 유리합니다.
지금부터 당신은 한 팀의 팀원이 되어 게임을 진행하려고 합니다. 다음은 5 x 5 크기의 맵에, 당신의 캐릭터가 (행: 1, 열: 1) 위치에 있고, 상대 팀 진영은 (행: 5, 열: 5) 위치에 있는 경우의 예시입니다.

위 그림에서 검은색 부분은 벽으로 막혀있어 갈 수 없는 길이며, 흰색 부분은 갈 수 있는 길입니다. 캐릭터가 움직일 때는 동, 서, 남, 북 방향으로 한 칸씩 이동하며, 게임 맵을 벗어난 길은 갈 수 없습니다.
아래 예시는 캐릭터가 상대 팀 진영으로 가는 두 가지 방법을 나타내고 있습니다.
- 첫 번째 방법은 11개의 칸을 지나서 상대 팀 진영에 도착했습니다.

- 두 번째 방법은 15개의 칸을 지나서 상대팀 진영에 도착했습니다.

위 예시에서는 첫 번째 방법보다 더 빠르게 상대팀 진영에 도착하는 방법은 없으므로, 이 방법이 상대 팀 진영으로 가는 가장 빠른 방법입니다.
만약, 상대 팀이 자신의 팀 진영 주위에 벽을 세워두었다면 상대 팀 진영에 도착하지 못할 수도 있습니다. 예를 들어, 다음과 같은 경우에 당신의 캐릭터는 상대 팀 진영에 도착할 수 없습니다.

게임 맵의 상태 maps가 매개변수로 주어질 때, 캐릭터가 상대 팀 진영에 도착하기 위해서 지나가야 하는 칸의 개수의 최솟값을 return 하도록 solution 함수를 완성해주세요. 단, 상대 팀 진영에 도착할 수 없을 때는 -1을 return 해주세요.
제한사항- maps는 n x m 크기의 게임 맵의 상태가 들어있는 2차원 배열로, n과 m은 각각 1 이상 100 이하의 자연수입니다.
- n과 m은 서로 같을 수도, 다를 수도 있지만, n과 m이 모두 1인 경우는 입력으로 주어지지 않습니다.
- maps는 0과 1로만 이루어져 있으며, 0은 벽이 있는 자리, 1은 벽이 없는 자리를 나타냅니다.
- 처음에 캐릭터는 게임 맵의 좌측 상단인 (1, 1) 위치에 있으며, 상대방 진영은 게임 맵의 우측 하단인 (n, m) 위치에 있습니다.
입출력 예mapsanswer
[[1,0,1,1,1],[1,0,1,0,1],[1,0,1,1,1],[1,1,1,0,1],[0,0,0,0,1]] | 11 |
[[1,0,1,1,1],[1,0,1,0,1],[1,0,1,1,1],[1,1,1,0,0],[0,0,0,0,1]] | -1 |
입출력 예 #1
주어진 데이터는 다음과 같습니다.

캐릭터가 적 팀의 진영까지 이동하는 가장 빠른 길은 다음 그림과 같습니다.

따라서 총 11칸을 캐릭터가 지나갔으므로 11을 return 하면 됩니다.
입출력 예 #2
문제의 예시와 같으며, 상대 팀 진영에 도달할 방법이 없습니다. 따라서 -1을 return 합니다.
문제 풀이
캐릭터가 이동하는 거리를 누적하면서 BFS 탐색으로 해결했습니다.
최단거리를 구해야 한다고 생각해 다익스트라를 떠올렸으나, 가중치가 따로 명시되어 있지 않고 한 칸을 이동하면 단순 거리 +1이 되므로 일반적인 BFS에 방문처리를 +1로 누적해가며 진행하면 되겠다고 생각했습니다.
let answer = -1;
const dx = [-1, 0, 1, 0];
const dy = [0, 1, 0, -1];
function solution(maps) {
const n = maps.length;
const m = maps[0].length;
bfs(maps, n, m);
return answer;
}
function bfs(maps, n, m) {
const q = [];
const visited = Array.from({ length: n }).map(() => Array.from({ length: m }).map(() => 0));
q.push([0, 0]);
visited[0][0] = 1;
while (q.length > 0) {
let [x, y] = q.shift();
if (x == n - 1 && y == m - 1) {
answer = visited[x][y];
return;
}
for (let i = 0; i < 4; i++) {
let nx = x + dx[i];
let ny = y + dy[i];
if (0 <= nx && nx < n && 0 <= ny && ny < m && maps[nx][ny] == 1 && visited[nx][ny] === 0) {
q.push([nx, ny]);
visited[nx][ny] = visited[x][y] + 1;
}
}
}
}